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Overview

Budget
 Total project funding

‒ DOE share: $1.5M
‒ Contractor share: $1.5M

 Funding for FY15
− DOE: $500K
− Project partners: $500K

in-kind + fund-in $75K (Hyundai)

Barriers
 B. Lack of cost-effective emission 

control
 C. Lack of modeling for 

combustion and emission control
 E. Durability

Partners
 Corning and Hyundai Motor
 University of Illinois at Urbana-

Champaign
 University of Illinois at Chicago

Timeline
 Start: Oct. 2011

‒ Contract signed: Sept. 2012
 End: Sept. 2015
 80% finished
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Relevance and Objectives
 PM emissions from GDI engines are mandated to be reduced

‒ Current GDI engine-out emissions cannot meet future PM regulations 
(mass & number)

‒ Cold start and transient modes are recognized to produce high PM 
emissions

‒ New test procedures reflecting real life drives require robust PM reduction 
technologies

 GPFs have been developed to meet stringent PM regulations
‒ High PN efficiency & low pressure drop
‒ Developing directions: “Add-on” GPF and “All-in-one” GPF

Corning, 2012 DEER Conference

“Add-on” GPF

“All-in-one” GPF
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 Ash impact could be more appreciable with GDI engines than with 
diesel engines
‒ Ash impact on DPF performance has been well characterized by MIT 

researchers. However, few reports on GPF performance with ash 
loading were disclosed.

‒ Backpressure increase and TWC functionality are of great interest.
‒ Increased ash fraction was observed to enhance soot oxidation (ANL, 

2014 AMR).
 Objectives

‒ Further validate ash enhancing effects on soot oxidation.
‒ Understand filter performance in terms of pressure drop and filtration 

efficiency, related with filter geometry and pore structure.
‒ Evaluate impact of ash loading on TWC-coated GPFs, based on 

backpressure increase, filtration efficiency and particle penetration with 
filter regeneration.

Relevance and Objectives (Cont’d)
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Project Milestone (FY14-15)
Quarter,

Year
Milestone Description Status

Q3, 2014 Detailed morphology data of particulates from a stock 
GDI engine with variation of injection parameters Complete

Q4, 2014 Analytical data to optimize the filter design MIP & X-ray microtomography,
Ongoing

Q1, 2015 Complete development of GPF test protocol, installation 
of test system, and preliminary test Complete

Q2, 2015 Complete tests for 4 bare filters Complete

Q3,2015 Complete tests for 3 catalyzed filters and an aged filter Ongoing

5



Overall Approach – soot & filter characterization

Soot oxidation experiments and bench-
scale filter tests (2”(D)x6”(L))2.4L GDI Engine

TGA

DSC

Characterization of GDI soot
and filter substrates 
(APS, CNM, UIUC)

Gravimetric 
sampling

In-line filter

PM properties
• Operation-specific PM emissions source (# 

& mass)
• Morphology & physicochemical properties
• Oxidation reactivity

Filter geometry
• Mercury intrusion porosimetry (MIP)

X-ray microtomography: 2D & 3D
• Impact on ΔP change and filtration 

performance
• Coating effects on filter geometry

Evaluation of filter performance
• Understanding soot oxidation mechanism
• Aging impact on filter performance using 

accelerated ash loading 
• Physical & chemical effects with ash 

loading - ΔP change, filtration efficiency, 
TWC function 
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GPF Test Approach – targeting feasible GPF testing
 Corning provided advanced cordierite-based filters

Selected sample % porosity Medium diameter (d50, µm)

AC 200/12
KEX 200/8
HP 300/8

HP 200/12

50.56
57.22
64.60
65.76

20.74
11.67
20.38
20.93

 Hyundai provided TWC-coating services on bare filters through OEM
- In-wall coating used in current TWC-coating technology

Selected Samples Catalyst  Coating Loading (g/L) PGM loading (g/ft3)

AC 200/12
KEM 300/8

HCW 200/12

w/ PGM, OSC, PGM&OSC
w/ TWC
w/ TWC

50
25, 50 and 100 

50

0.5
0.5
0.5

 Argonne evaluated different types of filters for fair comparison at real 
engine operating conditions using a bench-scale flow reactor under 
proposed test protocol.
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Summary of Technical Achievements in FY15

 Enhancement in soot oxidation was further validated by TGA experiments.
- Different engine operating conditions and simulated tight & loose contact
- Examinations of soot oxidation for three major inorganic additives (Ca, P & 

Zn) formulated by fuel doping
 Pore structures of filters were examined by X-ray tomography and mercury 

intrusion porosimetry (MIP) to understand catalyst coating effects.
- Medium porosity filter (AC 200/12) vs high porosity filters (HP 200/12 & 

300/8)
- Catalyst loading: 25 g/L (1X), 50 g/L (2X) and 100 g/L (4X)
 TWC-coated GPF performance was evaluated in the 2.4L GDI engine using 

the newly installed bench-scale reactor.
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Ash effect on soot oxidation is further validated

Injection timing 
varies

TGA: isothermal 600ºC, 8% O2
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 Ash fraction and soot mass were inversely correlated under the same condition sets
 Low-mass soot was always found to be more reactive due to increased ash fraction
 Ash, taken from filters of 100,000 mile run vehicle, enhanced soot oxidation reactivity 

at simulated tight contact and loose contact conditions
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Based on major additive components, Ca-, P- & Zn-
P-specific engine oils were formulated
ICP analysis: Proc-Rev 1158-3.9

0

500

1000

1500

2000

2500

3000
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Non-detergent
(SAE30)

Gasoline(5W20)
Conventional

Gasoline(5W20)
Synthetic

Gasoline(5W20)
Longer life

Diesel(15W40)
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Na

Ca

Mg

B

Zn

P

Mo

4,659 ppm 3,805 ppm 5,212 ppm 6,780 ppm646 ppm

Ca source: Calcium dodecyl-benzene 
sulfonate

P source: Triethyl phosphite

Zn & P: Zinc dithiophosphate
(ZDDP)

Dosage in fuel (ppm) Ca Zn P Na Total
Gasoline Only 0.0 

1% Non-detergent oil 0.4 3.3 2.7 6.4 
1% Conventional oil 21.2 11.0 9.6 4.6 46.5 
Calcium Sulfonate 

in 1% non-detergent oil 4 – 24 4 – 24

Phosphite
in 1% non-detergent oil 18 – 55 18 – 55

Zinc Dialkyl Dithiophosphate (ZDDP)
in 1% non-detergent oil 8 – 206 8 – 191 16 – 397

10



Soot oxidation enhanced with Ca, while deteriorated with P 

TGA: isothermal 600ºC, 8% O2

0

20

40

60

80

100

0 100 200 300 400 500

Non-detergent oil 1%
Conv. oil Ash 3.7%
Conv. oil Ash 23.4%
Ca Ash 3.5%
Ca Ash 5.8%
P Ash 3.2%
P Ash 5.6%
ZDDP Ash 8.5%
ZDDP Ash 16.7%

C
ar

bo
n 

so
ot

 m
as

s 
(%

)

Time (minutes)

Impact on soot oxidation
by 1.0 wt.% of ash fraction in soot

Ca +14.5%

P -15.4%

ZDDP (Zn+P) -13.7%

Conv. oil +11.1%

Baseline: non-detergent oil 1%

 Ca-derived ash significantly improved
soot oxidation reactivity, while P-derived
ash impaired reactivity

 Impact of Zn-derived ash seems to be minor
 Enhanced soot oxidation by ash present is

because Ca is a dominant component in ash
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Testing set-up that enables aging test and realistic 
GPF conditions has been newly built

Engine oil tank

Air heater

GPF

Previous system Current system

Optical GPF setup (half cut 2”(D)x6”(L))
- Visualization
- Low exhaust T with long line
- Sealing problem with quartz window
Dilution setup and emissions measurements

- Cumbersome handling for inlet & outlet
No lube-oil injection system

-

In-line GPF setup (2”(D)x6”(L))
- No visualization 
- Hot exhaust T as actual test
- No sealing problem

Dilution setup and emissions measurements
- Quick access: 3-way valve for fast measurements

Lube-oil injection system
- Aging test enabled
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GPF test protocol was prepared to evaluate GPF 
performance for the bench-scale reactor 
 Require test protocol that evaluate filter performance with ash loading
 Better understand GPF regeneration condition 
 Need clean filter condition with no soot contained for fair comparison

ΔP test with air 

Soot/ash loading  
1250 rpm & 25% load
Qm = 13.8 kg/h
T=350°C

Soot oxidation at increased T

# & mass emissions, ΔP change

2000 rpm & 65% load
Qm = 23 kg/h
T=600°C

Fuel-cut operation 2000rpm or 30002000rpm
Qm = 23 kg/h

Complete soot oxidation with air Air heater
T=550°C
Qm = 15 kg/h

Repeat

# & mass emissions, ΔP change

# & mass emissions, ΔP change
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High porosity filter had relatively minor changes in 
pore structures with catalyst coating
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 High porosity filters have relatively big pores uniformly spread in filters 
 Changes in total porosity were minor with catalyst coating, regardless of filter type. However, 

MPD decreased significantly with catalyst coating for medium porosity filter. 
 With catalyst coating, PSD became wider for medium porosity filter than for high porosity filters.
 High porosity filter lost porosity benefits with high catalyst coating (4X). 

2D images of X-ray microtomography from APS
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Low & medium catalyst loadings had minor impacts 
on ΔP, mass & # filtration efficiencies for HP filter 
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HP300-8-2X

Initial 
ηmass (%)

Soot loading (g/L) 
@ ηmass 100%

AC200/8-Bare 70.0 0.040 

HP300/8-Bare 65.0 0.140 

HP300/8-1X 79.5 0.120 

HP300/8-2X 76.6 0.175 

HP200/12-2X 87.4 0.110 

 High porosity filters had low ΔP increase and slow 
increase in filtration efficiency up to the max point with 
soot loading.

 High porosity filter (HP300/8) has comparable ΔP 
increase, mass & # filtration efficiencies with low (1X) 
and medium (2X) catalyst loadings.

 For high porosity filter, lowest # filtration efficiency 
was obtained for 40 – 60 nm particles, which are 
smaller than what others observed (100 – 150 nm).

- Greenfield gap showing the most particle penetrating 
range tends to slightly shift to smaller size range with 
catalyst loading.   

Soot mass: 10 mg/m3
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With pore plugging by ash loading, depth filtration 
duration significantly decreased, improving filter 
efficiencies

 Ash loading
- Engine oil: 5W20 conventional (p.10)
- Oil consumption rate: 2% in fuel      
- Ash loading of 2 g/L in 3 hrs
 Ash loading changed ΔP patterns as 

observed from previous DPF studies
- Short depth filtration (0.02 vs 0.2 g/L 

of soot) 
- Lower ΔP slope (inverse point: 

0.18g/L)
 Ash loading improved filtration 

efficiency
- Initial mass 𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (98 vs 87.4%)
- Initial # 𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (98.3 vs 81%)

Total # FE (%)

W/O Ash 81.06

Ash 2.0 g/L 98.28
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Soot mass: 10 mg/m3

Filter: HP200/12-2X

16



Ash induced continuous regeneration and suppressed 
particle penetration with pore plugging

 Continuous regeneration was observed at an initial 
stage with ash loading.

- After soot burning at the initial stage, soot loading 
resumed

- No or very slow soot oxidation with no ash even at 
600°C due to the extremely low O2 availability

 Particle emissions were relatively high during 
continuous regeneration with no ash loading.

 Right after fuel cut, particle penetration increased with 
pores opened, resulting from soot oxidation, when 
there was no ash loaded. With ash loading of 2 g/L, 
however, particle penetration was minor after fuel cut.

W/O Ash

Ash 2.0 g/L

Fuel cut operations
Continuous operation
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Responses to FY14 Reviewer Comments
 Ash effects were noteworthy, but they need more supportive data.

‒ As examined in this work, enhancement in soot oxidation with ash present is due 
to Ca additive that is the most abundant in engine oil.

‒ Continuous regeneration occurred at 600°C with ash loading without fuel cut. In 
comparison, soot oxidation is quite slow even at such a high T with very low O2
availability when ash loading is negligible.

 There need studies on fundamentals of PM formation in GDI engines. 
‒ Based on this work as well as others, increased PM emissions from GDI engines 

are directly related with delayed fuel vaporization and resultant fuel-air mixing 
problems. Although deeper investigation is out of scope, several operating 
strategies such as increased injection pressure and fast warm-up are shown to 
decrease soot emissions.

 Integration with kinetics expertise is required
‒ After more investigations on filter type, catalyst loading and filter position, kinetics 

research is recommended for the future.
 Collaborations with research partners are not clear.

‒ Collaborations with other partners were not clearly defined (for instance, Tokyo 
Tech and workshop hosting). Clear roles of research partners are listed in the 
following page.
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Collaborations
Collaborating Partners
 Corning Incorporated

– Provided 8 different filter substrates including most advanced GPF filter 
substrates

– Had several technical meetings for future directions
– Performed MIP of uncatalyzed and catalyzed filters

 Hyundai Motor Company
– Provided a 2.4 production GDI engine and open ECU for full control
– Gave technical advice of GPF research direction and provided catalyst coating 

services for GPF substrates based on current state-of-the-art coating technology
Other Internal and Outside Partners
 University of Illinois at Urbana-Champaign

– Performed XPS analysis
 University of Illinois at Chicago

– Xiao Fu (Ph.D. student) helped to analyze X-ray tomography as a guest graduate
 User Facilities at Argonne (Advanced Photon Source & Center for 

Nanoscale Materials)
– X-ray microtomography, TEM, Raman, FTIR and SEM 
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Remaining challenges and barriers
 Accelerated ash loading needs more investigation for qualification.
- Rarely examined in GDI engines
- Will be compared with aged filters from field tests
 Long-term TWC functionality in TWC-coated GPF has not much 

known with ash loading.
- Ash loading challenges maintaining TWC performance as well as 

backpressure increase over time 
- Development of ash-durable catalyst and filter systems may be required
 Development of cost-effective and durable GPF system is 

complicated.
- “Add-on” GPF vs “All-in-one” GPF 
- “All-in-one” GPF has cost benefit over “Add-on” GPF, but the former could 

be more vulnerable toward catalyst poisoning and backpressure increase

20



Future Work (to the end of FY15)

 Mechanisms of enhanced soot oxidation in the presence of Ca 
additive

 Long-term aging tests with catalyzed filters
– High-porosity catalyzed filters (HP 300/8 & 200/12)
– Targeted ash loading: 30g/L
– Aging effects: pressure drop, filter regeneration and TWC performance

 Advancing X-ray micro-tomography and SEM analysis
– 3-D image analyses of uncatalyzed, catalyzed and aged filters
– Post-Mortem analysis: ash loading in filters
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Summary
 Enhancement in soot oxidation by ash is due mainly to Ca additive that is a 

major component in engine oil additives.
 The newly-built in-line GPF system with an engine oil injection system enabled 

“TWC-coated GPF” tests with ash loading, in which TWC performance, 
pressure drop and soot oxidation performance are measured.

 High porosity filter had relatively minor changes in pore structure with catalyst 
coating, resulted in minor impact on ΔP, filtration efficiencies, in comparison 
with medium porosity filter. 

- However, high catalyst loading (100g/L) sacrificed high porosity benefits.
- Greenfield gap was observed to be in small particle range of 40 - 60 nm in 

mobility diameter.
 Ash loading had significant impacts on ΔP and filtration efficiency.
- Shorter depth filtration duration and increased mass & number filtration 

efficiencies.
- Continuous regeneration occurred spontaneously at high T with ash loading.
- Ash loading helped suppress particle penetration after soot oxidation.
 While continuous regeneration was interfered even at 600°C with extremely 

low O2, fuel cut conditions induced continuous regeneration.  
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Technical Back-up
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Developing micropore measurement capability using 
the X-ray microtomography facility at APS-Argonne 

AC 200/12

HP 300/8

KEX 200/8

HP 200/12

 APS facility provides high-fidelity micropore
structures with a spatial resolution of 0.65 
µm/voxel

 3-D images reconstructed from ~2000 2-D images
 Will examine effects of catalyst coating and ash 

loading on detailed micropore structures

AC 200/12 – 3D image

Open pores

Dead pores

50%

57%

66%

Porosity

65%
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Despite similar crystalline structure, GDI soot 
shows different oxidation patterns, than Printex U
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 However, oxidation enhancement with partial oxidation is significant with PU, 
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Many of sub-23-nm particles seem to be soot

Most sub-15-nm particles are amorphous carbon
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Lube oil additives increase the number of sub 30 nm 
particles and decrease number of large particles
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Engine oil may emit as liquid drops or less-ordered carbon without 
complete oxidation – Engine condition-dependent

From P additive

Some contain metal compounds 
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